The Challenges of Sentiment Detection in the Social Programmer Ecosystem

Nicole Novielli, Fabio Calefato, Filippo Lanubile
University of Bari
Dipartimento di Informatica
Bari, Italy
{nicole.novielli, fabio.calefato, filippo.lanubile}@uniba.it

ABSTRACT
A recent research trend has emerged to study the role of affect in the social programmer ecosystem, by applying sentiment analysis to the content available in sites such as GitHub and Stack Overflow. In this paper, we aim at assessing the suitability of a state-of-the-art sentiment analysis tool, already applied in social computing, for detecting affective expressions in Stack Overflow. We also aim at verifying the construct validity of choosing sentiment polarity and strength as an appropriate way to operationalize affective states in empirical studies on Stack Overflow. Finally, we underline the need to overcome the limitations induced by domain-dependent use of lexicon that may produce unreliable results.

Categories and Subject Descriptors
H.1.2 [User/Machine Systems]: Human factors

General Terms
Human Factors.

Keywords
Online Q&A, Technical Forum, Sentiment Analysis, Stack Overflow, Social Programmer, Social Software Engineering

1. INTRODUCTION
Software engineering involves a large amount of social interaction as programmers often need to cooperate with others, whether directly or indirectly. However, we have become fully aware of the importance of social aspects in software engineering activities only over the last decade. In fact, it was not until the recent diffusion and massive adoption of social media that we could witness the rise of the “social programmer” [41] and the surrounding ecosystem [42].

Social media has deeply influenced the design of software development-oriented tools such as GitHub (i.e., a social coding site) and Stack Overflow (i.e., a community-based question answering site) [43]. Stack Overflow, in particular, is an example of an online community where social programmers do networking by reading and answering others’ questions, thus participating in the creation and diffusion of crowdsourced documentation. In our previous work, we argued and proved that among the non-technical factors, which can influence the members of online communities, the emotional style of a technical question does affect the probability of promptly obtaining a satisfying answer [29], [9]. More specifically, our effort is to understand how expressing affective states in Stack Overflow influences the probability for askers of eliciting an accepted answer and the probability for answerers of having an answer accepted.

Our research follows a recent trend that has emerged to study the role of affect in social computing. For example, Kucuktunc et al. [19] performed a large-scale sentiment analysis study on Yahoo! Answers to assess the impact of the semantic orientation of a post on its perceived quality. Althoff et al. [1] found that expressing gratitude in a question is positively correlated with success of altruistic requests in Reddit.com. Guzman et al. [17] perform sentiment analysis of commit comments in GitHub and demonstrate that a correlation exists between emotions and other factors such as the programming language used in a project, the geographical distribution of the team and the day of the week. Similarly, Guzman and Bruegge [16] used a sentiment analysis tool for detecting the polarity, i.e., the positive or negative semantic orientation of a text, to investigate the role of emotional awareness in software development teams.

What these studies have in common is that they applied sentiment analysis techniques to crowd-generated content relying on polarity as the only dimension to operationalize affect. However, polarity is only one of the possible dimensions of affect, which could be also modeled in terms of its duration, activation, cognitive triggers, and specificity [11]. Still, polarity is the most used dimension because of its ease of measurement and the availability of open source and robust analysis tools. In this paper, we argue that polarity, if employed alone, is unable to detect the sentiments of programmers in a reliable manner. Hence, we highlight and discuss the challenges existing when sentiment analysis techniques are employed to assess the affective load of text containing technical lexicon, as typical in the social programmer ecosystem.

The remainder of the paper is structured as follows. In Section 2, we first provide an overview of detecting affective states from text, including a state-of-the-art in the field of sentiment analysis. Then, in Section 3, we perform a qualitative analysis to show the limits of only using polarity to measure the sentiment expressed in questions and answers in Stack Overflow. The findings from our analysis are then discussed in Section 4, where we also outline the research directions.
2. MINING AFFECTIVE STATES FROM TEXT

2.1 Affect modeling theories

Nowadays, affective computing is an established discipline [35] and sensing affective states from text is now regarded as fundamental in several domains, from human-computer interaction [7][21][30] to software engineering [8][26][16].

Affective states vary in their degree of stability and in their ‘object-oriented specificity’ [11], ranging from personality traits to emotions. Personality traits are long-standing, organized sets of characteristics of a person that uniquely influences cognitions, motivations and behaviors. Emotions are transient and typically complex, episodic, dynamic and structured events, which involve perceptions, thoughts, feelings, bodily changes, and personal dispositions to experience further emotional episodes. Emotions are episodic and dynamic in that, over time, the elements can come and go, depending on all sorts of factors. Other states, such as interpersonal stance or attitudes are in a middle of this scale: they are initially triggered by individual characteristics like personality, social role, and others but may vary, in valence (i.e. positive vs. negative) and intensity (i.e. low arousal vs. high arousal) by episodes occurring during communication.

Mining affective states from text involves, on one hand, to model them according to bi-dimensional models representing the affect polarity or valence and its level of activation or intensity; on the other hand, some studies explicitly deal with discrete emotion labeling of text, by looking for linguistic cues of specific affective states. Psychologists worked at decoding emotions for decades, by focusing on two main questions: (i) how can emotions be classified? (ii) What is their functioning?, i.e., How are they triggered? How do they affect behavior? Which is the role played by cognition? Two points of view prevailed: the first one assumes that a limited set of basic emotions exists, while the second one consider emotions as a continuous function of one or more dimensions. It is the case of the ‘circumplex model’ of affect [40], which models emotions along a bi-dimensional representation schema, including valence (pleasant vs. unpleasant) and arousal (activation vs. deactivation) of emotions. Theories following the discrete trend agree on the idea that a limited set of basic emotions exists, although consensus about the nature and the number of these basic emotions has not been reached. Ekman defines a basic emotion as having specific feelings, universal signals and corresponding physiological changes [12]; Lazarus describes nine negative (Anger, Anxiety, Guilt, Shame, Sadness, Envy, Jealousy, Disgust) and six positive (Joy, Pride, Love, Relief, Hope, Compassion) emotions, with their appraisal patterns: positive emotions are triggered if the situation is congruent with one of the individual’s goals; otherwise, negative emotions are triggered [20]; Plutchik defines discrete emotions as corresponding to specific adaptive processes: reproduction, safety, etc. [36]. The Plutchik’s model identifies eight primary emotions (i.e., anger, fear, sadness, disgust, surprise, anticipation, trust, and joy), graphically depicted as a wheel (see Figure 1). Opposite affective states, with respect to both valence and intensity, are placed opposite of each other using complementary colors. Strength of emotions increases towards the center of the model, with low activation affective states lying next to the circumference.

During the last decade, in computational linguistics several approaches have been investigated for mining affect from text. With respect to the specific goals addressed and to the adopted theory, researchers model and detect affect at a different granularity. Several studies refer to discrete emotion categorization. For example, Liu et al. [23] propose a method based on large-scale real-world knowledge about the way people usually make appraisals of everyday situations. The approach exploits generic knowledge basis of commonsense to identify the six Ekman basic emotional states (happy, sad, angry, fearful, disgusted, and surprised) through the text analysis. Neviarouskaya et al. [27] use a rule-based approach that includes consideration of the deep syntactic structures for emotion computation in the text. Experiments are performed on different corpora to identify nine emotional labels (plus the neutral one). Compared with other state-of-the-art techniques, the method shows promising results in fine-grained emotion recognition. Other studies, rather focuses on the valence (i.e. the positive or negative orientation) of affective states conveyed in natural interactions. It is the case of Litman et al. [22], who defined an annotation scheme to label emotions in tutoring dialogs along a linear scale (negative, neutral, positive) in order to detect students’ boredom and frustration. Analogously, Batliner et al. [7], define a method for automatically detecting emotionally critical phases in a dialogue with customers of an automatic call-center to enhance customers’ satisfaction. Le Tallec et al. [21] studied how to classify emotions in speech by considering the language of hospitalized children interacting with companion robots. Linguistic clues are considered, achieving good results in detecting emotional valence of utterances. Novielli et al. [30], exploit linguistic cues to detect cold vs. warm social attitude of users toward an Embodied Conversational Agents in the domain of simulation of persuasion dialogues.

2.2 State of the Art on Sentiment Analysis

As far as affect polarity is concerned, sentiment analysis provides researchers with a suite of methods and linguistic resources, which can be exploited for recognizing the semantic orientation of texts. Sentiment analysis is the study of the subjectivity and polarity of a text [33]. More recently, researcher in this field started to deal also with sentiment strength detection, obtaining promising results [47]. Sentiment analysis techniques have been successfully applied to the problem of detecting the valence of affective states conveyed by a text [16], for modeling socio-economic phenomena (modelling socio-economic phenomena

Figure 1. The Plutchik Wheel [36]
and to automatically analyze text for opinion mining purposes [18][33].

2.2.1 Approaches

Traditional approaches to sentiment analysis treat the subjectivity and polarity detection as text classification problems and exploit machine learning algorithms for extracting features to train supervised classifiers on human-annotated corpora. The features employed are typically words (i.e., tokens, stems, lemmata) and part-of-speech tags, also combined in n-grams, that is sequences of n contiguous words. Such approaches mainly rely on state-of-the-art machine learning algorithms, such as Support Vector Machines [48], and might also be improved by performing intelligent feature selection [38]. With the worldwide diffusion of social media, a huge amount of textual data has been made available, thus attracting the interest of researchers in this domain [39]. Sentiment analysis on such informal texts poses new challenges due to the presence of slang, misspelled words and micro-blogging features such as hashtags or links. Since traditional approaches may not be successfully exploited in this domain, researchers have successfully exploited approaches based on lexical and micro-blogging features [6][25].

However, supervised approaches present the main drawback of being highly domain-dependent. This means that classification models are very likely to perform poorly outside the domain they were trained on [15]. In fact, when training classification models, it is very likely to include consideration of terms that associate with sentiment because of the domain. It is the case of political debates, where names of countries afflicted by wars might be associated to negative sentiments; analogous problems might be observed for the technology domain, where killer features usually referred in positive customers’ review usually become obsolete in relatively short periods of time. Such terms are usually referred by researchers as indirect affective words to distinguish them from direct ones [45]. Indeed, according to the emotion theory defined by Clore et al. [10], it is possible to distinguish between words that directly refer to emotional states (e.g., ‘fear’, ‘joy’, ‘cheerful’, ‘sad’) and those having only an indirect reference to an emotional state, depending on the context (e.g., the words which indicates emotional causes such as ‘killer’ or ‘monster’ or emotional responses to an event such as ‘cry’ or ‘laugh’).

To overcome these limitations, lexical approaches are adopted, which exploit the prior sentiment polarity of words in a text, based on lexical resources, i.e. large lexicons of words annotated with their prior polarity (i.e. positive or negative semantic orientation of the word). The overall sentiment of a text is computed based on the prior polarity of the words composing it [28][46] and contextual polarity (i.e. the polarity conveyed by a word with respect to its context of usage [4][49]. In fact, words with negative prior polarity can be used to express positive sentiment (as in ‘I feel so sorry for you’ where a positive attitude towards the interlocutor is expressed) or even in a neutral context. Furthermore, the effect of contextual valence shifter [37], such as intensifiers or negation, need to be taken into account since they might intensify, mitigate or even invert the polarity of the word they are associated with. Therefore, lexicon-based approaches are usually integrated with other knowledge such as semantic rules [27][46] or features specific of the communication medium being, as for example emoticon lists [47].

2.2.2 Linguistic Resources

In this section, we provide an overview on the state-of-the-art linguistic resources for sentiment analysis and affect mining from text.

Sentiment lexicons are basically organized as lists of words with scores indicating their prior polarity and, in some cases, also the sentiment strength. These lexicons can be differentiated based on how they represent the information about prior polarity of words. The Bing Liu Lexicon of Opinion Words [18] is a manually created lexicon of about 6800 words, built upon e-commerce customer reviews. The annotation is binary and simply states if a word expresses positive or negative sentiment. The part of speech is also reported, since different prior polarity annotations can be assigned to the same word, based on the role it plays in the discourse.

Similarly, the MPQA Lexicon [49] provides a broader list of positive and negative terms (about 8k), also including information about the strength of the sentiment conveyed (i.e. a word can be categorized as either ‘weakly’ or ‘strongly’ subjective). The MPQA Lexicon is part of the OpinionFinder¹, a system for automatic identification of subjective sentences in documents.

The NRC Emotion Lexicon [24] contains about 14K entries consisting of words for which annotation is provided based on both polarity and a set of discrete emotion labels (i.e. anger, fear, sadness, disgust, surprise, anticipation, trust, and joy).

Similarly, the NRC Hashtag Sentiment Lexicon and the Sentiment140 Lexicon provide lists of words with their sentiment association score, calculated as pointwise mutual information with respect to collections of positive and negative tweets [25]. Unlike the previous ones, these two lexica have been automatically trained based on a corpus of English tweets annotated using positive and negative hashtags and emotions as ‘noisy’ labels.

Another widely used lexicon designed on purpose for serving sentiment analysis tasks is SentiWordNet 3.0 [13]. SentiWordNet extends Word-Net [14] by associating positive, negative and objective scores to each synset (i.e., set of synonyms), where the three scores sum up to 1 (see example scores for the word ‘good’ reported in Table 1). A lemma can receive multiple polarity scores if it occurs in more than one synset. In such cases, the most frequent sense for the lemma is selected, with respect to its part-of-speech. Thanks to the availability of explicit objective scores, additional features can be computed to model the presence of neutral terms, as reported in [6].

WordNet Affect [44] also extends the WordNet database with affective labels (a-labels) for annotation of synsets. One or more a-labels may be assigned to a synset. The resource also includes a-labels representing moods, situations eliciting emotions, or emotional responses (see examples in Table 2).

In this review, we include the Linguistic Inquiry and Word Count (LIWC) taxonomy, even if it has been developed in the scope of broader psycholinguistic research [34] without being explicitly designed for sentiment analysis. LIWC organizes words into psychologically meaningful categories based on the assumption that words and language reflect most part of cognitive and emotional phenomena involved in communication. Previous research has shown how the language use varies with respect to the communicative intention, thus making possible to distinguish between objective and subjective statements as well as between

¹ http://mpqa.cs.pitt.edu/opinionfinder
agreement and disagreement expressions [31]. In fact, among the word classes included in the taxonomy, LIWC provides linguistic categories that draw distinctions between negative and positive emotion lexicon, which research could use to derive word-count metrics to assess the affective load of a text.

### 3. ANALYSIS OF AFFECTIVE STATES IN STACK OVERFLOW

#### 3.1 Dataset and Instrumentation

We built the dataset for our analysis starting from the official Stack Overflow dumps.² As for the questions and askers’ comments, they were extracted from the Stack Overflow dump, updated on May 2014. Instead, the answers and answerers’ comments were extracted from the official Stack Overflow dump of September 2014, as described in [9]. For each question, answer and comment in our dataset, we annotated the sentiment score, measured in terms of text polarity and its strength, as further explained in the next section. Then, we built our final dataset for the qualitative analysis by opportunistically choosing the cases with the highest sentiment score.

In order to measure the sentiment load of a contribution, we look for affective lexicon in the body of 1000 questions, answers and comments. Specifically, we measure the overall positive/negative polarity of a text as well as the sentiment strength. We deliberately choose to capture the sentiment of text, that is, its positive/negative semantic orientation of the text. Sentiment is calculated for each post in our dataset using SentiStrength³, a state of the art tool already employed in previous research on sentiment analysis in social computing [1][17][19], which has been designed to overcome the limitations due to domain-dependence of supervised approaches. SentiStrength is a lexicon-based classifier that exploit rules and linguistic resources. The SentiStrength lexicon is built by combining entries from different resources, such as the Bing-Liu and the MPQA lexica, which we introduced in the previous section. Furthermore, it has been validated for the social web and therefore it is robust for the analysis of informal text including web jargon (such as emoticons or abbreviations) [47].

Based on the assumption that a sentence can convey mixed sentiment, SentiStrength outputs both positive and negative sentiment scores for any input text written in English. It assigns the overall positive and negative scores to a text by considering the maximum among all the sentence scores. In SentiStrength, positive sentiment scores range from ±1 (neutral) to +5 (extremely positive/negative). In our analysis, we adjust the sentiment score and map them into the ±0[4] interval, with zero indicating the absence of positive or negative sentiment (‘neutral’ texts). These metrics represent the overall positive/negative polarity and strength of the sentiment conveyed by a post, whether a question, an answer or a comment. For each post, we issue both its positive and negative score. When both are null, the post is considered as neutral (no sentiment is expressed through the lexicon employed). A few examples are provided in Table 3.

We analyzed the top 100 questions and follow-up askers’ comments with the highest positive and negative scores (400 cases overall). Analogously, we analyzed the 100 top answers and follow-up answerers’ comments with the highest positive and negatives score (400 additional cases).

---

² https://archive.org/details/stackexchange
³ http://sentistrength.wlv.ac.uk

### Table 1. SentiWordNet scores for the word ‘good’

<table>
<thead>
<tr>
<th>Scores</th>
<th>Sense ID and gloss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive = 0.75</td>
<td>Having desirable or positive qualities () especially those suitable for a thing () specified (as in ‘a good joke’) () good#1</td>
</tr>
<tr>
<td>Negative = 0</td>
<td>having the normally expected amount () (as in ‘gives good measure’) () good#2</td>
</tr>
<tr>
<td>Objective = 0.25</td>
<td>agreeable or pleasing () (as in ‘we all had a good time’) () good#6</td>
</tr>
<tr>
<td>Positive = 0</td>
<td>benefit (as in ‘for your own good’) () good#1</td>
</tr>
<tr>
<td>Negative = 0</td>
<td>moral excellence or admirableness () (as in ‘there is good in people’) () good#2</td>
</tr>
<tr>
<td>Objective = 1</td>
<td>commodity, article of commerce () good#4</td>
</tr>
</tbody>
</table>

### Table 2. A-Labels in WordNet Affect with Examples

<table>
<thead>
<tr>
<th>A-label</th>
<th>Example of Synsets</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMOTION</td>
<td>noun ‘anger’, verb ‘fear’</td>
</tr>
<tr>
<td>MOOD</td>
<td>noun ‘animosity’, adjective ‘fear’</td>
</tr>
<tr>
<td>TRAIT</td>
<td>noun ‘aggressiveness’, adj. ‘competitive’</td>
</tr>
<tr>
<td>COGNITIVE State</td>
<td>noun ‘confusion’, adj. ‘dazed’</td>
</tr>
<tr>
<td>PHYSICAL State</td>
<td>noun ‘illness’</td>
</tr>
<tr>
<td>HEDONIC Signal</td>
<td>noun ‘hurt’, noun ‘suffering’</td>
</tr>
<tr>
<td>Emotion-eliciting SITUATION</td>
<td>noun ‘awkwardness’</td>
</tr>
<tr>
<td>Emotional RESPONSE</td>
<td>noun ‘cold sweat’, verb ‘tremble’</td>
</tr>
<tr>
<td>BEHAVIOR</td>
<td>noun ‘offense’, adj. ‘inhibited’</td>
</tr>
<tr>
<td>ATTITUDE</td>
<td>noun ‘intolerance’, noun ‘defensive’</td>
</tr>
<tr>
<td>SENSATION</td>
<td>noun ‘coldness’, noun ‘feel’</td>
</tr>
</tbody>
</table>
3.2 Affect in Questions and Askers’ Comments

As for questions with an overall negative polarity, the analysis reveals that the askers generally express a negative emotion associated with their technical issue or report a negative opinion. In the first case, information seekers mainly express their frustration for not being able to solve a problem as in the following examples:

- “I am not sure what I did in a previous life to warrant this, it must have been bad! I am getting buried in a world of xml [...]”
- “I recently got stuck on an odd problem”.

Conversely, negative opinions mainly refer to a preference or evaluation about a technical issue, as in these examples.

- “They use it to clean up connections, which is really scary”
- “It is very painful to add multiple tickets to Trac”.
- “I find this incredibly annoying with Dreamweaver”.

As for negative comments added by the asker, opinions about tools and resources are the main reason for use of negative affective lexicons as in

- “I really hate those properties panels that don’t look the same whether they are VB/C# winform/web. This sucks!”

Again, we notice information seekers expressing their distress:

- “This is driving me nutz :-(” frustration:
- “Unfortunately Xcode doesn’t use CodeSense for editing files outside a project; which is incredibly frustrating.”
- “I still get 400 bad request page! :(( “

and fear:

- “there’s no way to do this I’m afraid : ( “

Cases of humor are also detected:

- “Haha that comment made me laugh my heart out. Makes me kind of proud of how horrible my code can be!”
- “I would also like to add that I do find humor in these sorts of problems. This is because the only other option is to become horribly horribly angry. And who wants that?!”

as well as a few instances ofoffending sarcastic comments:

- “Do u know [the] answer ? If not .... then u might know how hard is homework. Ignorance is bliss”.

As for questions with positive sentiment score, we do not observe actual emotion reporting. On the contrary, we rather find opinions, as in the following examples:

- “I have very simple and stupid trouble [...] I’m pretty confused. explain please, what is wrong?”
- “Thank you, that was really helpful”

3.3 Affect in Answers and Answerers’ Comments

As for answers, we observe that a negative lexicon is used for expressing actual emotions in the great majority of cases. However, the negative polarity of these answers does not involve a negative judgment of the asker but it rather results in either an attempt of showing empathy towards the asker as in the following examples:

- “If you are really worried about storage usage [...]”
- “This could be very annoying but it is simply solved”
- “[...] This will make your experience a lot less frustrating”

or in a criticism towards a technological issue, as in the following cases:

- “This could work, but feels really awful”
- “This is extremely ugly for loop construction.”

As for comments to answers, we found they are very rich in affective lexicon too. We observe that Stack Overflow users express a wide variety of affective states in comments. We speculate that this might occur because comments are seen as a ‘free zone’ since reputation mechanisms do not apply to comments. More in detail, as for positive comments we found that the main affective states are gratitude, as in

- “Thanks for the feedback, it was a pleasure!”
- “Happy coding!”

and positive feelings linked to satisfaction and happiness for the help provided, as in the following example

- “Thanks, that helped. Case closed!”

As for negative comments, we observe a wider variety of emotions. In some cases the negative polarity of lexicon actually
conveys a negative attitude towards the interlocutor (in this case, the author of the question)

- “Didn’t notice the horrid inline jQuery”
- “Added some instructions for the really hopeless cases”
- “Arrrgbbh, how I hate those people who downvote answers without leaving a comment as for why the downvote…”

Conversely, negative lexicon may also be used to convey a positive attitude towards the reader. In such cases, the writer attempts to convey signal of empathy towards the interlocutor, as in the following examples, where people apologize for not being able to provide further help:

- “To explain my regrettably unfriendly comment (sorry about that).”
- “You could try this one (not optimal, I am afraid)“
- “I’m afraid I can’t help you any further with this issue!”

Furthermore, users employ a negative lexicon also for expressing opinions on controversial technical issues, as in:

- Ask: “But what if you do have to worry about spaces in your filenames?” – Answer: “Then you’ve got major problems! Let me meditate on it; it is extremely unpleasant, whatever.”
- “Sorry for all the editing but this is a ridiculously complex issue”

3.4 Domain-dependence of sentiment analysis

Due to the presence of domain-specific lexicon, examples of false positives in negative sentiment detection emerge from the analysis of both comments and answers, such as in:

- “You are vulnerable to this bug”
- “What is the best way to kill a critical process”
- “I am missing a parenthesis. But where?”

As already highlighted in Section 2, the domain-dependency of sentiment analysis tools is a known problem [15] meaning that applying a tool outside the domain in which it was tested, may produce unreliable results.

In the case of Stack Overflow, this bias is emphasized by the fact that a social Q&A site is explicitly designed for people looking for help because in trouble with a domain-specific issue. Therefore, discussion on Q&A sites are intrinsically skewed towards negative polarity because they are naturally rich in ‘problem’ lexicon, which does not necessarily indicate the intention to show any affective state, as in the following example, for which a negative score is inaccurately issued by SentiStrength:

- “I have a trouble […]. Please, explain what is wrong”

4. DISCUSSION AND FUTURE WORK

The findings of our qualitative investigation highlight open challenges for sentiment analysis in social software engineering and inspire directions for future work. First, in contrast with the current trend of using sentiment to operationalize the affect dimension in empirical studies, our analysis advocates in favor of the adoption of more appropriate affective state models. The wide variety of emotions, attitudes and opinions retrieved in our dataset confirm that affect is a quite complex phenomenon whose polarity is only one dimension of analysis.

Even when performed with state-of-the-art tools, measuring the polarity of a text is not sufficient to capture the attitude of the sender towards the recipient of a text, despite the use of affective loaded lexicon which may refer to technical issue rather than being addressed to the interlocutor.

Furthermore, the wide variety of affective states expressed in Stack Overflow posts recommends a more fine-grained investigation of the role of emotions. Depending on the specific goals addressed, researchers could be interested in issuing a discrete label describing the affective state expressed (e.g., frustration, anger, sadness, joy, satisfaction) as different affective states may be relevant to different context of interaction and tasks. For example, being able to identify harsh comments towards technical matters, could be useful in detecting particularly challenging questions that have not been exhaustively answered, which is a goal addressed by current research on effective knowledge-sharing in Stack Overflow [2]. Conversely, detecting attitude towards the interlocutor could be of help for the community moderators that could intervene in order to guide the users’ behavior towards a more constructive pattern of interaction towards cooperative problem solving. Indeed, previous research on success of questions has shown how strong negative emotions in follow-up discussions discourage participation [3]. In fact, even if Stack Overflow guidelines include a ‘Be nice’ section⁴, in which users are invited to be patient and avoid offensive behavior people might not be prepared for effectively dealing with the barriers of social media to non-verbal communication. This clearly emerges as an open problem in the Stack Exchange community as discussed by users, which complain about harsh comments mainly coming from expert⁵ contributors.

Finally, we underline the need for tuning state-of-the-art resources for sentiment detection. Indeed, an open challenge for sentiment analysis is to overcome the limitations induced by domain-dependent use of lexicon. This is consistent with Wittgenstein’s meaning-is-use assumption [50], claiming that the meaning of an expression is fully determined by its use.

In our future work, we will improve lexicon-based sentiment analysis approaches and fine-tune state-of-the-art resources by exploiting semantic features [6] for appropriately dealing with domain-dependent use of lexicon, in order to distinguish accurately neutral sentences from emotionally loaded ones in Stack Overflow discussions.

5. ACKNOWLEDGMENTS

This work is partially funded by the ATS Romantic under the Apulian ICT Living Labs program.

6. REFERENCES


